Fly By Wire Air is a one-stop shop for the aviation enthusiast. You will find aviation apparel, RC hobby planes, items for the historic aviation buff and even products and services for amateur pilots. We hope you will enjoy visiting our site. When you think of flying – Fly By Wire.

Monthly Archives: October 2014

CHARGE EM UP

Within the past fifteen years there has been a revolution in both types and capabilities of rc model batteries.  During this blog, we will attempt to analyze current types of batteries on the market and their best uses.

The NICAD or nickel cadium  battery was the first battery in use for rc models and has served the radio control pilot for decades.  NICAD batteries were first developed in Sweden, with the first practical batteries produced in 1906.   Nickel cadium batteries were first produced in the United States in 1946 and radio control enthusiasts began to use them in the 1950s.  They were popular because they had a higher power to weight ratio than gasoline engines in use on rc models of the time, although they had a limited endurance.  Nickel cadium batteries offer the advantages of a low internal charge resistance, producing high currents.  These batteries also have a relatively low self discharge (retaining its charge while stored) and their performance is not drastically affected by fluctuations in temperature.  Some of the disadvantages of NICADS are they are both heavier and bulkier than newer technology batteries, are not environmentally friendly, as well as gradually losing their charge capacity if not periodically drained and recharged.  Despite the availability of newer battery types, some rc hobbyists continue to use them when extremely fast performance Is required.

BATTERIES#1

Nickel-metal hydride (NIMH) batteries are chemically similar to nickel cadium cells while utilizing a hydrogen-absorbing alloy instead of cadium.  An NIMH battery has two to three times the capacity of an NICAD battery.  Nickel-metal hydride batteries were first tested in 1967 using a lanthanum alloy, which was both expensive to produce in addition to having a limited charge life.  After extensive testing in the 1970s and 1980s a practical battery using  a mischmetal alloy was developed in 1987.  NIMH batteries have the advantages of a higher capacity than NICAD batteries, in addition to retaining more of their charge capacity over time and being more environmentally friendly.  Nickel-hydride batteries can lose their charge faster than other types, and require an outside charger for peak efficiency, unlike NICAD batteries.  NIMH batteries are lighter than nickel-cadium units and more subject to breakage with imported batteries often running below stated capacity.  NIMH batteries are most often used in transmitter and receiver packs of rc model units.

A lithium polymer or LIPO battery is a rechargeable battery of lithium-ion in a soft pouch type structure, unlike NICAD or NIMH batteries.  The cells of the LIPO batteries contain liquid electrolytes with the polymer barriers used to separate the battery cells.  The electrolytes may also be gelled by a polymer additive to conduct current.  Lithium polymer batteries have been in use since the mid 1990s  and have a very high power to weight ratio.  They retain much of their charge in storage and are resistant to temperature changes.  However, they are sensitive to overcharging and rapidly discharging, posing a fire hazard due to the polymer chemicals.  RC models such as quadcopters now routinely use LIPO batteries attaining performance and endurance greater than many gas powered units.  There are two recent variations of LIPO technology which overcome some of the basic LIPO battery limitations.  The LifePO4 is more resistant to overcharging and discharging than the basic LIPO battery, as well as being less flammable .  The LifePO4 has an ever higher power to weight ratio than a regular lithium polymer battery.  The A123 battery, a modified LifePO4 utilizing nano technology, is able to deliver current at an even faster rate than the LifePO4 with greater safety.  Such batteries give the rc pilot revolutionary advantages of weight, performance and safety.

 

 

 

AN EMPTY COCKPIT

PILOT#1

When one makes the decision to become a pilot, they first realize how many hours and how many dollars are involved in order to complete the training – a regimen not everyone can sustain.  During this blog, we will explore current employment trends for commercial pilots, as well as the underlying causes for pilot shortages.

When the Airline Deregulation Act passed in 1978, the government no longer controlled airline industry scheduling, staffing or fares.  With the market saturated with new airlines, the industry now controlled who they hired and how much they paid them.  The airline segment entered a period of intensified competition between existing airlines with new ones entering the market.  While these conditions created an increased demand for commercial pilots, flight schools were able to keep pace with the demand due to the expansion of the national economy.  This growth began to slow in the 1990s, with a number of airlines such as Precision, Atlantic, TWA and North American either being absorbed into another airline or leaving the industry, creating a surplus of available pilots.

On the heels of the airline consolidation of the 1990s came another event which brought a drastic impact upon the industry – the terrorist attacks of September 11, 2001.  These attacks brought about enhanced security measures and related costs to be borne by the airlines, in addition to creating a climate of fear, which devastated the industry as a whole.

Financial considerations are another factor affecting the supply of pilots.  The major airlines (those serving international routes) currently require a pilot to have a Bachelor’s degree along with completion of their Airline Transport Pilot (ATP) certificate.  The tuition required to complete both courses of study is easily in excess of $100,000, leaving entry level pilots saddled with debt for a number of years.  To make matters worse, competition is keen for the relatively few openings at the major airlines, forcing many graduates to begin their careers working for the smaller regional airlines, subcontractors who operate smaller jets and turboprops on behalf of the major carriers.  These airlines offer starting salaries in the $20,000 to $25,000 range, low by industry standards, with advancement to captain often taking at least five years.  Pilot tuition further increased in 2013, to satisfy a new FAA requirement of 1,500 hrs. training for safety purposes.  The previous requirement was 350 hrs.  Starting salaries at the major carriers average between $35,000 to $40,000 per year.  By comparison, a 2LT in the USAF, with flight pay and allowances, earns approximately $50,000 per year.

So, is there a current pilot shortage?  Several criteria may be used to gauge current and future staffing levels.  One indicator, additional air routes, would suggest a surplus of pilots in the near term.  After 9/11, the airline industry went through a drastic reduction in staffing.  While the industry has largely recovered from this, it has been a slow one with traffic still not at pre 9/11 levels.  In 2012, Boeing conducted a study which forecast a need of 70,000 pilots by 2024.  This is, in part, based upon a projected demand of new aircraft orders at an increase of 1.4% per year over the next decade.  The results of this study are a mixed bag, suggesting a slow expansion at the major airlines with a corresponding reduction at the regionals.  Flight school enrollment is another factor of pilot supply.  While flight school enrollment has experienced a gradual decline over the last ten years, a recent General Accounting Office study indicated a demand of an additional 42,000 pilots between now and 2024.  The study determined the projected pilot pool to be adequate to meet anticipated needs.  However, the 1,500 hr. training requirement imposed by the FAA upon flight schools delays the certification of future pilots by an additional 12 to 18 mos., limiting the available pipeline of entry level pilots.  The extension of mandatory retirement from age 60 to 65, approved by the FAA in 2007, will serve to reduce pilot attrition.  This is partially offset by a reduction of former military pilots entering the airline force, which they believe has limited pay and growth potential.  Furloughed pilots, whose positions were cut from their respective airlines due to unprofitable routes and other factors, are an ever present part of the pilot pool.

While the various studies and factors appear to offset one another, two problems remain certain.  The cost of completing an Airline Transport Certificate coupled with a Bachelor’s degree now averages about $125,000, which could make an aviation career a domain of the wealthy.  The other half of this problem is the relatively low starting salaries offered by the regional airlines.  At the current levels, it takes entry level pilots ten years or more just to pay off the ATP training.  Airlines and/or government assistance must be made available to insure the best qualified applicants serve as pilots.  While the regional airlines have traditionally been stepping stones to careers with the majors, the regionals must seek to improve pay, benefits and overall working conditions to promote stability within their pilot force.  A flight captain with ten or more years of service with the major airlines averages from $120,000 to $200,000 per year, the regionals about 60% of that.  If these two problems can be addressed, we’ll not only have an adequate pilot supply but a highly capable one.